Tuesday, October 23, 2012

1210.6020 (L. C. Campos et al.)

Quantum and classical confinement of resonant states in a trilayer
graphene Fabry-Perot interferometer
   [PDF]

L. C. Campos, A. F. Young, K. Surakitbovorn, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero
The advent of few-layer graphenes has given rise to a new family of two-dimensional systems with emergent electronic properties governed by relativistic quantum mechanics. The multiple carbon sublattices endow the electronic wavefunctions with pseudospin, a lattice analog of the relativistic electron spin, while the multilayer structure leads to electric field effect tunable electronic bands. Here we use these properties to realize giant conductance oscillations in ballistic trilayer graphene Fabry-Perot interferometers, which result from phase coherent transport through resonant bound states beneath an electrostatic barrier. We cloak these states by selectively decoupling them from the leads, resulting in transport via non-resonant states and suppression of the giant oscillations. Cloaking is achieved both classically, by manipulating quasiparticle momenta with a magnetic field, and quantum mechanically, by locally varying the pseudospin character of the carrier wavefunctions. Our results illustrate the unique potential of trilayer graphene as a versatile platform for electron optics and pseudospintronics.
View original: http://arxiv.org/abs/1210.6020

No comments:

Post a Comment