Tuesday, July 17, 2012

1207.3776 (Gary Wolfowicz et al.)

Decoherence mechanisms of 209Bi donor electron spins in isotopically
pure 28Si
   [PDF]

Gary Wolfowicz, Stephanie Simmons, Alexei M. Tyryshkin, Richard E. George, Helge Riemann, Nikolai V. Abrosimov, Peter Becker, Hans-Joachim Pohl, Stephen A. Lyon, Mike L. W. Thewalt, John J. L. Morton
Bismuth (209Bi) is the deepest Group V donor in silicon and possesses the most extreme characteristics such as a 9/2 nuclear spin and a 1.5 GHz hyperfine coupling. These lead to several potential advantages for a Si:Bi donor electron spin qubit compared to the more common phosphorus donor. Previous studies on Si:Bi have been performed using natural silicon where linewidths and electron spin coherence times are limited by the presence of 29Si impurities. Here we describe electron spin resonance (ESR) and electron nuclear double resonance (ENDOR) studies on 209Bi in isotopically pure 28Si. ESR and ENDOR linewidths, transition probabilities and coherence times are understood in terms of the spin Hamiltonian parameters showing a dependence on field and mI of the 209Bi nuclear spin. We explore various decoherence mechanisms applicable to the donor electron spin, measuring coherence times up to 700 ms at 1.7 K at X-band, comparable with 28Si:P. The coherence times we measure follow closely the calculated field-sensitivity of the transition frequency, providing a strong motivation to explore 'clock' transitions where coherence lifetimes could be further enhanced.
View original: http://arxiv.org/abs/1207.3776

No comments:

Post a Comment