Thursday, November 22, 2012

1211.5055 (Y. Yin et al.)

Kinetic theory of surface plasmon polariton in semiconductor nanowires    [PDF]

Y. Yin, M. W. Wu
Based on the semiclassical model Hamiltonian of the surface plasmon polariton and the nonequilibrium Green-function approach, we present a microscopic kinetic theory to study the influence of the electron scattering on the dynamics of the surface plasmon polariton in semiconductor nanowires. The damping of the surface plasmon polariton originates from the resonant absorption by the electrons (Landau damping), and the corresponding damping exhibits size-dependent oscillations and distinct temperature dependence without any scattering. The scattering influences the damping by introducing a broadening and a shifting to the resonance. To demonstrate this, we investigate the damping of the surface plasmon polariton in InAs nanowires in the presence of the electron-impurity, electron-phonon and electron-electron Coulomb scatterings. The main effect of the electron-impurity and electron-phonon scatterings is to introduce a broadening, whereas the electron-electron Coulomb scattering can not only cause a broadening, but also introduce a shifting to the resonance. For InAs nanowires under investigation, the broadening due to the electron-phonon scattering dominates. As a result, the scattering has a pronounced influence on the damping of the surface plasmon polariton: The size-dependent oscillations are smeared out and the temperature dependence is also suppressed in the presence of the scattering. These results demonstrate the the important role of the scattering on the surface plasmon polariton damping in semiconductor nanowires.
View original: http://arxiv.org/abs/1211.5055

No comments:

Post a Comment