R. C. Buceta, D. Hansmann
Discrete and continuous models belonging to a universality class share the same linearities and (or) nonlinearities. In this work, we propose a new approach to calculate coarse grained coefficients of the continuous differential equation from discrete models. We apply small constant translations in a test space and show how to obtain these coefficients from the transformed average interface growth velocity. Using the examples of the ballistic deposition (BD) model and the restricted solid-on-solid (RSOS) model, both belonging to the Kardar-Parisi-Zhang (KPZ) universality class, we demonstrate how to apply our approach to calculate analytically the corresponding coefficients of the KPZ equation. Our analytical nonlinear coefficients are in agreement with numerical results obtained by Monte Carlo tilted simulations. In addition to the BD and the RSOS we study a competitive RSOS model that shows crossover between the KPZ and Edwards-Wilkinson universality classes.
View original:
http://arxiv.org/abs/1110.3035
No comments:
Post a Comment