Wednesday, October 3, 2012

1210.0666 (Sumanta Bhandary et al.)

Graphene as a reversible spin manipulator of molecular magnets    [PDF]

Sumanta Bhandary, Saurabh Ghosh, Heike Herper, Heiko Wende, Olle Eriksson, Biplab Sanyal
One of the primary objectives in molecular nano-spintronics is to manipulate the spin states of organic molecules with a d-electron center, by suitable external means. In this letter, we demonstrate by first principles density functional calculations, as well as second order perturbation thoery, that a strain induced change of the spin state, from S=1 $\to$ S=2, takes place for an iron porphyrin (FeP) molecule deposited at a divacancy site in a graphene lattice. The process is reversible in a sense that the application of tensile or compressive strains in the graphene lattice can stabilize FeP in different spin states, each with a unique saturation moment and easy axis orientation. The effect is brought about by a change in Fe-N bond length in FeP, which influences the molecular level diagram as well as the interaction between the C atoms of the graphene layer and the molecular orbitals of FeP.
View original: http://arxiv.org/abs/1210.0666

No comments:

Post a Comment