Tuesday, June 19, 2012

1206.3608 (Kyung-Hwan Jin et al.)

Proximity-induced giant spin-orbit interaction in epitaxial graphene on
topological insulator
   [PDF]

Kyung-Hwan Jin, Seung-Hoon Jhi
Heterostructures of Dirac materials such as graphene and topological insulators provide interesting platforms to explore exotic quantum states of electrons in solids. Here we study the electronic structure of graphene-Sb2Te3 heterostructure using density functional theory and tight-binding methods. We show that the epitaxial graphene on Sb2Te3 turns into quantum spin-Hall phase due to its proximity to the topological insulating Sb2Te3. It is found that the epitaxial graphene develops a giant spin-orbit gap of about ~20 meV, which is about three orders of magnitude larger than that of pristine graphene. We discuss the origin of such enhancement of the spin-orbit interaction and possible outcomes of the spin-Hall phase in graphene.
View original: http://arxiv.org/abs/1206.3608

No comments:

Post a Comment