Benito Santos, Silvia Gallego, Arantzazu Mascaraque, Kevin F. McCarty, Adrian Quesada, Alpha T. N'Diaye, Andreas K. Schmid, Juan de la Figuera
Imaging the change in the magnetization vector in real time by spin-polarized low-energy electron microscopy, we observed a hydrogen-induced, reversible spin-reorientation transition in a cobalt bilayer on Ru(0001). Initially, hydrogen sorption reduces the size of out-of-plane magnetic domains and leads to the formation of a magnetic stripe domain pattern, which can be understood as a consequence of reducing the out-of-plane magnetic anisotropy. Further hydrogen sorption induces a transition to an in-plane easy-axis. Desorbing the hydrogen by heating the film to 400 K recovers the original out-of-plane magnetization. By means of ab-initio calculations we determine that the origin of the transition is the local effect of the hybridization of the hydrogen orbital and the orbitals of the Co atoms bonded to the absorbed hydrogen.
View original:
http://arxiv.org/abs/1203.3945
No comments:
Post a Comment