Wednesday, July 17, 2013

1307.4319 (Scooter D. Johnson et al.)

ZnS/Diamond Composite Coatings for Infrared Transmission Applications
Formed by the Aerosol Deposition Method

Scooter D. Johnson, Fritz J. Kub, Charles R. Eddy Jr
The deposition of nano-crystalline ZnS/diamond composite protective coatings on silicon, sapphire, and ZnS substrates, as a preliminary step to coating infrared transparent ZnS substrates from powder mixtures by the aerosol deposition method is presented. Advantages of the aerosol deposition method include the ability to form dense, nanocrystalline films up to hundreds of microns thick at room temperature and at a high deposition rate on a variety of substrates. Deposition is achieved by creating a pressure gradient that accelerates micrometer-scale particles in an aerosol to high velocity. Upon impact with the target substrate the particles fracture and embed. Continued deposition forms the thick compacted film. Deposition from an aerosolized mixture of ZnS and diamond powders onto all targets results in linear trend from apparent sputter erosion of the substrate at 100% diamond to formation of a film with increasing fractions of ZnS. The crossover from abrasion to film formation on sapphire occurs above about 50% ZnS and a mixture of 90% ZnS and 10% diamond forms a well-adhered film of about 0.7 \mu m thickness at a rate of 0.14 \mu m/min. Resulting films are characterized by scanning electron microscopy, profilometry, infrared transmission spectroscopy, and x-ray photoemission spectroscopy. These initial films mark progress toward the future goal of coating ZnS substrates for abrasion resistance.
View original:

No comments:

Post a Comment