Meeghage Madusanka Perera, Ming-Wei Lin, Hsun-Jen Chuang, Bhim Prasad Chamlagain, Chongyu Wang, Xuebin Tan, Mark Ming-Cheng Cheng, David Tománek, Zhixian Zhou
We report the fabrication of ionic liquid (IL) gated field-effect transistors (FETs) consisting of bilayer and few-layer MoS2. Our transport measurements indicate that the electron mobility about 60 cm2V-1s-1 at 250 K in ionic liquid gated devices exceeds significantly that of comparable back-gated devices. IL-FETs display a mobility increase from about 100 cm2V-1s-1 at 180 K to about 220 cm2V-1s-1 at 77 K in good agreement with the true channel mobility determined from four-terminal measurements, ambipolar behavior with a high ON/OFF ratio >107 (104) for electrons (holes), and a near ideal sub-threshold swing of about 50 mV/dec at 250 K. We attribute the observed performance enhancement, specifically the increased carrier mobility that is limited by phonons, to the reduction of the Schottky barrier at the source and drain electrode by band bending caused by the ultrathin ionic-liquid dielectric layer.
View original:
http://arxiv.org/abs/1304.4669
No comments:
Post a Comment