Thursday, December 27, 2012

1212.6251 (Maksym Serbyn et al.)

New Dirac points and multiple Landau level crossings in biased trilayer
graphene
   [PDF]

Maksym Serbyn, Dmitry A. Abanin
Recently a new high-mobility Dirac material, trilayer graphene, was realized experimentally. The band structure of ABA-stacked trilayer graphene consists of a monolayer-like and a bilayer-like pairs of bands. Here we study electronic properties of ABA-stacked trilayer graphene biased by a perpendicular electric field. We find that the combination of the bias and trigonal warping gives rise to a set of new Dirac points: in each valley, seven species of Dirac fermions with small masses of order of a few meV emerge. The positions and masses of the emergent Dirac fermions are tunable by bias, and one group of Dirac fermions becomes massless at a certain bias value. Therefore, in contrast to bilayer graphene, the conductivity at the neutrality point is expected to show non-monotonic behavior, becoming of the order of a few e^2/h when some Dirac masses vanish. Further, we analyze the evolution of Landau level spectrum as a function of bias. Emergence of new Dirac points in the band structure translates into new three-fold-degenerate groups of Landau levels. This leads to an anomalous quantum Hall effect, in which some quantum Hall steps have a height of 3e^2/h. At an intermediate bias, the degeneracies of all Landau levels get lifted, and in this regime all quantum Hall plateaus are spaced by e^2/h. Finally, we show that the pattern of Landau level crossings is very sensitive to certain band structure parameters, and can therefore provide a useful tool for determining their precise values.
View original: http://arxiv.org/abs/1212.6251

No comments:

Post a Comment