Tuesday, September 11, 2012

1209.1736 (C. Stock et al.)

Evidence for anisotropic polar nanoregions in relaxor PMN: A neutron
study of the elastic constants and anomalous TA phonon damping
   [PDF]

C. Stock, P. M. Gehring, H. Hiraka, I. Swainson, G. Xu, Z. -G. Ye, H. Luo, J. -F. Li, D. Viehland
We use neutron scattering to characterize the acoustic phonons in the relaxor PMN and demonstrate the presence of an anisotropic damping mechanism directly related to short-range, polar correlations. For a large range of temperatures above Tc ~ 210, K, where dynamic polar correlations exist, acoustic phonons propagating along [1\bar{1}0] and polarized along [110] (TA2 phonons) are overdamped and softened across most of the Brillouin zone. By contrast, acoustic phonons propagating along [100] and polarized along [001] (TA1 phonons) are overdamped and softened for only a limited range of wavevectors. The anisotropy and temperature dependence of the acoustic phonon energy linewidth are directly correlated with the elastic diffuse scattering, indicating that polar nanoregions are the cause of the anomalous behavior. The damping and softening vanish for q -> 0, i.e. for long-wavelength acoustic phonons, which supports the notion that the anomalous damping is a result of the coupling between the relaxational component of the diffuse scattering and the harmonic TA phonons. Therefore, these effects are not due to large changes in the elastic constants with temperature because the elastic constants correspond to the long-wavelength limit. We compare the elastic constants we measure to those from Brillouin scattering and to values reported for pure PT. We show that while the values of C44 are quite similar, those for C11 and C12 are significantly less in PMN and result in a softening of (C11-C12) over PT. There is also an increased elastic anisotropy (2C44/(C11-C12)) versus that in PT. These results suggest an instability to TA2 acoustic fluctuations in relaxors. We discuss our results in the context of the debate over the "waterfall" effect and show that they are inconsistent with TA-TO phonon coupling or other models that invoke the presence of a second optic mode.
View original: http://arxiv.org/abs/1209.1736

No comments:

Post a Comment