Wednesday, August 29, 2012

1208.5565 (A. Benassi et al.)

Optimal Energy Dissipation in Sliding Friction Simulations    [PDF]

A. Benassi, A. Vanossi, G. E. Santoro, E. Tosatti
Non-equilibrium molecular dynamics simulations, of crucial importance in sliding friction, are hampered by arbitrariness and uncertainties in the removal of the frictionally generated Joule heat. Building upon general pre-existing formulation, we implement a fully microscopic dissipation approach which, based on a parameter-free, non-Markovian, stochastic dynamics, absorbs Joule heat equivalently to a semi-infinite solid and harmonic substrate. As a test case, we investigate the stick-slip friction of a slider over a two-dimensional Lennard-Jones solid, comparing our virtually exact frictional results with approximate ones from commonly adopted dissipation schemes. Remarkably, the exact results can be closely reproduced by a standard Langevin dissipation scheme, once its parameters are determined according to a general and self-standing variational procedure.
View original: http://arxiv.org/abs/1208.5565

No comments:

Post a Comment