Kyuho Lee, Brian Kolb, T. Thonhauser, David Vanderbilt, David C. Langreth
We report first-principles calculations for a ferroelectric organic crystal of phenazine and chloranilic acid molecules. Weak intermolecular interactions are properly treated by using a second version of van der Waals density functional known as vdW-DF2 [K. Lee et al., Phys. Rev. B 82, 081101 (2010)]. Lattice constants, total energies, spontaneous electric polarizations, phonon modes and frequencies, and the energy barrier of proton transfer are calculated and compared with PBE and experiments whenever possible. We show that the donation of one proton from a chloranilic acid molecule to a neighboring phenazine molecule is energetically favorable. This proton transfer is the key structural change that breaks the centrosymmetry and leads to the ferroelectric structure. However, there is no unstable phonon associated with the proton transfer, and an energy barrier of 8 meV is found between the paraelectric and ferroelectric states.
View original:
http://arxiv.org/abs/1206.0060
No comments:
Post a Comment