Thursday, May 31, 2012

1205.6630 (Philippe Lambin et al.)

Long-range interactions between substitutional nitrogen dopants in
graphene: electronic properties calculations
   [PDF]

Philippe Lambin, Hakim Amara, François Ducastelle, Luc Henrard
Being a true two-dimensional crystal, graphene has special properties. In particular, a point-like defect in graphene may have effects in the long range. This peculiarity questions the validity of using a supercell geometry in an attempt to explore the properties of an isolated defect. Still, this approach is often used in ab-initio electronic structure calculations, for instance. How does this approach converge with the size of the supercell is generally not tackled for the obvious reason of keeping the computational load to an affordable level. The present paper addresses the problem of substitutional nitrogen doping of graphene. DFT calculations have been performed for 9x9 and 10x10 supercells. Although these calculations correspond to N concentrations that differ by about 10%, the local densities of states on and around the defects are found to depend significantly on the supercell size. Fitting the DFT results by a tight-binding Hamiltonian makes it possible to explore the effects of a random distribution of the substitutional N atoms, in the case of finite concentrations, and to approach the case of an isolated impurity when the concentration vanishes. The tight-binding Hamiltonian is used to calculate the STM image of graphene around an isolated N atom. STM images are also calculated for graphene doped with 0.5 % concentration of nitrogen. The results are discussed in the light of recent experimental data.
View original: http://arxiv.org/abs/1205.6630

No comments:

Post a Comment