D. O. Scanlon, P. D. C. King, R. P. Singh, A. de la Torre, S. McKeown Walker, G. Balakrishnan, F. Baumberger, C. R. A. Catlow
The binary Bi-chalchogenides, Bi2Ch3, are widely regarded as model examples of a recently discovered new form of quantum matter, the three-dimensional topological insulator (TI) [1-4]. These compounds host a single spin-helical surface state which is guaranteed to be metallic due to time reversal symmetry, and should be ideal materials with which to realize spintronic and quantum computing applications of TIs [5]. However, the vast majority of such compounds synthesized to date are not insulators at all, but rather have detrimental metallic bulk conductivity [2, 3]. This is generally accepted to result from unintentional doping by defects, although the nature of the defects responsible across different compounds, as well as strategies to minimize their detrimental role, are surprisingly poorly understood. Here, we present a comprehensive survey of the defect landscape of Bi-chalchogenide TIs from first-principles calculations. We find that fundamental differences in the energetics of native defect formation in Te- and Se-containing TIs enables precise control of the conductivity across the ternary Bi-Te-Se alloy system. From a systematic angle-resolved photoemission (ARPES) investigation of such ternary alloys, combined with bulk transport measurements, we demonstrate that this method can be utilized to achieve true topological insulators, with only a single Dirac cone surface state intersecting the chemical potential. Our microscopic calculations reveal the key role of anti-site defects for achieving this, and predict optimal growth conditions to realize maximally-resistive ternary TIs.
View original:
http://arxiv.org/abs/1204.4063
No comments:
Post a Comment