Matteo Maestri, Karsten Reuter
Hierarchically combining semi-empirical methods and first-principles calculations we gain a novel and noteworthy picture of the molecular-level mechanisms that govern the water-gas-shift (WGS) and reverse water-gas-shift (r-WGS) reactions on Rh catalysts. Central to this picture is that the WGS and r-WGS follow two different dominant reaction mechanisms: WGS proceeds according to a carboxyl (COOH) mechanism, whereas r-WGS proceeds according to a redox (CO2 {\to} CO + O) mechanism. The obtained results furthermore underscore the danger of common first-principles analyses that focus on a priori selected dominant paths. Not restricted to such bias, our herein proposed hierarchical approach thus constitutes a promising avenue to properly transport and incorporate the ab initio predictive-quality to a new level of system complexity.
View original:
http://arxiv.org/abs/1204.0892
No comments:
Post a Comment