Wednesday, April 11, 2012

1201.2253 (Dionissios T. Hristopulos et al.)

Stochastic Stick - Slip Model Linking Crustal Shear Strength and
Earthquake Interevent Times
   [PDF]

Dionissios T. Hristopulos, Vasiliki Mouslopoulou
The current understanding of the earthquake interevent times distribution (ITD) is incomplete. The Weibull distribution is often used to model the earthquake ITD. We link the earthquake ITD on single faults with the Earth's crustal shear strength distribution by means of a phenomenological stick - slip model. We obtain Weibull ITD for power-law stress accumulation, i.e., $\sigma(t) = \alpha t^{\beta}$, where $\beta >0$ for single faults or systems with homogeneous strength statistics. We show that logarithmic stress accumulation leads to the log-Weibull ITD. For the Weibull ITD, we prove that (i) $m= \beta m_s$, where $m$ and $m_s$ are, respectively, the ITD and crustal shear strength Weibull moduli and (ii) the time scale $\tau_s = (S_s/\alpha)^{1/\beta}$ where $S_s$ is the scale of crustal shear strength. We generalize the ITD model for fault systems. We investigate deviations of the ITD tails from the Weibull due to sampling bias, magnitude selection, and non-homogeneous strength parameters. Assuming the Gutenberg - Richter law and independence of $m$ on the magnitude threshold, $M_{L,c},$ we deduce that $\tau_s \propto e^{- \rho_{M} M_{L,c}},$ where $\rho_M \in [1.15, 3.45]$ for seismically active regions. We demonstrate that a microearthquake sequence conforms reasonably well to the Weibull model. The stochastic stick - slip model justifies the Weibull ITD for single faults and homogeneous fault systems, while it suggests mixtures of Weibull distributions for heterogeneous fault systems. Non-universal deviations from Weibull statistics are possible, even for single faults, due to magnitude thresholds and non-uniform parameter values.
View original: http://arxiv.org/abs/1201.2253

No comments:

Post a Comment