Eliyahu Osherovich, Michael Zibulevsky, Irad Yavneh
In this work we develop an algorithm for signal reconstruction from the magnitude of its Fourier transform in a situation where some (non-zero) parts of the sought signal are known. Although our method does not assume that the known part comprises the boundary of the sought signal, this is often the case in microscopy: a specimen is placed inside a known mask, which can be thought of as a known light source that surrounds the unknown signal. Therefore, in the past, several algorithms were suggested that solve the phase retrieval problem assuming known boundary values. Unlike our method, these methods do rely on the fact that the known part is on the boundary. Besides the reconstruction method we give an explanation of the phenomena observed in previous work: the reconstruction is much faster when there is more energy concentrated in the known part. Quite surprisingly, this can be explained using our previous results on phase retrieval with approximately known Fourier phase.
View original:
http://arxiv.org/abs/1203.0879
No comments:
Post a Comment