Hyunsu Sim, S. W. Cheong, Bog G. Kim
The effect of the octahedral tilting of ASnO3 (A = Ca, Sr, Ba) parent compound and bi-color ASnO3/BSnO3 superlattice (A, B = Ca, Sr, Ba) was predicted from density-functional theory. In the ASnO3 parent compound, the structural phase transition as a function of the A-site cation size was correlated with the magnitude of the two octahedral tilting modes (a-a-c0 tilting and a0a0c+ tilting). The magnitude of the octahedral tilting modes in the superlattices was analyzed quantitatively and found to be associated with that of the constituent parent materials. The ASnO3/BSnO3 superlattices showed hybrid improper ferroelectricity resulting from the coupling of two octahedral tilting modes (a-a-c0 tilting and a0a0c+ tilting), which are also responsible for the structural phase transition from a tetragonal to orthorhombic phase. The ferroelectricity due to A-site mirror symmetry breaking is a secondary order parameter for an orthorhombic phase transition in the bi-color superlattice and is related to the {\Gamma}5- symmetry mode. The coupling between the tilting modes and ferroelectric mode in the bi-color superlattice of ASnO3/BSnO3 was analyzed by group theory and symmetry mode analysis.
View original:
http://arxiv.org/abs/1304.7419
No comments:
Post a Comment