J. A. Drocco, C. J. Olson Reichhardt, C. Reichhardt, A. R. Bishop
Exotic vortex states with long range attraction and short range repulsion have recently been proposed to arise in superconducting hybrid structures and multi-band superconductors. Using large scale simulations we examine the static and dynamic properties of such vortex states interacting with random and periodic pinning. In the absence of pinning this system does not form patterns but instead completely phase separates. When pinning is present there is a transition from inhomogeneous to homogeneous vortex configurations similar to a wetting phenomenon. Under an applied drive, a dynamical dewetting process can occur from a strongly pinned homogeneous state into pattern forming states. We show that a signature of the exotic vortex interactions under transport measurements is a robust double peak feature in the differential conductivity curves.
View original:
http://arxiv.org/abs/1207.5834
No comments:
Post a Comment