1205.3939 (Pekka Koskinen)
Pekka Koskinen
Since graphene nanoribbons are thin and flimsy, they need support. Support gives firm ground for applications, and adhesion holds ribbons flat, although not necessarily straight: ribbons with high aspect ratio are prone to bend. The effects of bending on ribbons' electronic properties, however, are unknown. Therefore, this article examines the electromechanics of planar and gently bent graphene nanoribbons. Simulations with density-functional tight-binding and revised periodic boundary conditions show that gentle bends in armchair ribbons can cause significant widening or narrowing of energy gaps. Moreover, in zigzag ribbons sizeable energy gaps can be opened due to axial symmetry breaking, even without magnetism. These results infer that, in the electronic measurements of supported ribbons, such bends must be heeded.
View original:
http://arxiv.org/abs/1205.3939
No comments:
Post a Comment