Teresa Castan, Antoni Planes, Avadh Saxena
The three primary ferroics, namely ferromagnets, ferroelectrics and ferroelastics exhibit corresponding large (or even giant) magnetocaloric,electrocaloric and elastocaloric effects when a phase transition is induced by the application of an appropriate external field. Recently the suite of primary ferroics has been extended to include ferrotoroidic materials in which there is an ordering of toroidic moments in the form of magnetic vortex-like structures, examples being LiCo(PO_4)_3 and Ba_2CoGe_2O_7. In the present work we formulate the thermodynamics of ferrotoroidic materials. Within a Landau free energy framework we calculate the toroidocaloric effect by quantifying isothermal entropy change (or adiabatic temperature change) in the presence of an applied toroidic field when usual magnetization and polarization may also be present simultaneously. We also obtain a nonlinear Clausius-Clapeyron relation for phase coexistence.
View original:
http://arxiv.org/abs/1205.1392
No comments:
Post a Comment