Tanyakarn Treeratanaphitak, Mark D. Pritzker, Nasser Mohieddin Abukhdeir
A kinetic Monte Carlo (KMC) method is presented to simulate the electrodeposition of a metal on a single crystal surface of the same metal under galvanostatic conditions. This method utilizes the multi-body embedded-atom method (EAM) potential to characterize the interactions of metal atoms and adatoms. The KMC method accounts for deposition and surface diffusion processes including hopping, atom exchange and step-edge atom exchange. Steady-state deposition configurations obtained using the KMC method are validated by comparison with the structures obtained through the use of molecular dynamics (MD) simulations to relax KMC constraints. The results of this work support the use of the proposed KMC method to simulate electrodeposition processes at length (microns) and time (seconds) scales that are not feasible using other methods.
View original:
http://arxiv.org/abs/1307.5586
No comments:
Post a Comment