Thursday, May 23, 2013

1305.5087 (Kyung-Jin Lee et al.)

Self-consistent calculation of spin transport and magnetization dynamics    [PDF]

Kyung-Jin Lee, M. D. Stiles, Hyun-Woo Lee, Jung-Hwan Moon, Kyoung-Whan Kim, Seo-Won Lee
A spin-polarized current transfers its spin-angular momentum to a local magnetization, exciting current-induced magnetization dynamics. So far, most studies in this field have focused on the direct effect of spin transport on magnetization dynamics, but ignored the feedback from the magnetization dynamics to the spin transport and back to the magnetization dynamics. Although the feedback is usually weak, there are situations when it can play an important role in the dynamics. In such situations, self-consistent calculations of the magnetization dynamics and the spin transport can accurately describe the feedback. This review describes in detail the feedback mechanisms, and presents recent progress in self-consistent calculations of the coupled dynamics. We pay special attention to three representative examples, where the feedback generates non-local effective interactions for the magnetization. Possibly the most dramatic feedback example is the dynamic instability in magnetic nanopillars with a single magnetic layer. This instability does not occur without non-local feedback. We demonstrate that full self-consistent calculations generate simulation results in much better agreement with experiments than previous calculations that addressed the feedback effect approximately. The next example is for more typical spin valve nanopillars. Although the effect of feedback is less dramatic because even without feedback the current can induce magnetization oscillation, the feedback can still have important consequences. For instance, we show that the feedback can reduce the linewidth of oscillations, in agreement with experimental observations. Finally, we consider nonadiabatic electron transport in narrow domain walls. The non-local feedback in these systems leads to a significant renormalization of the effective nonadiabatic spin transfer torque.
View original: http://arxiv.org/abs/1305.5087

No comments:

Post a Comment