Wednesday, February 6, 2013

1302.0993 (Guang-Xin Ni et al.)

Graphene-Ferroelectric Hybrid Structure for Flexible Transparent
Electrodes
   [PDF]

Guang-Xin Ni, Yi Zheng, Sukang Bae, Chin Yaw Tan, Orhan Kahya, Jing Wu, Byung Hee Hong, Kui Yao, Barbaros Özyilmaz
Graphene has exceptional optical, mechanical and electrical properties, making it an emerging material for novel optoelectronics, photonics and for flexible transparent electrode applications. However, the relatively high sheet resistance of graphene is a major constrain for many of these applications. Here we propose a new approach to achieve low sheet resistance in large-scale CVD monolayer graphene using non-volatile ferroelectric polymer gating. In this hybrid structure, large-scale graphene is heavily doped up to 3{\times}1013 cm-2 by non-volatile ferroelectric dipoles, yielding a low sheet resistance of 120 {\Omega}{\Box} at ambient conditions. The graphene-ferroelectric transparent conductors (GFeTCs) exhibit more than 95% transmittance from the visible to the near infrared range owing to the highly transparent nature of the ferroelectric polymer. Together with its excellent mechanical flexibility, chemical inertness and the simple fabrication process of ferroelectric polymers, the proposed GFeTCs represent a new route towards large-scale graphene based transparent electrodes and optoelectronics.
View original: http://arxiv.org/abs/1302.0993

No comments:

Post a Comment