Jae Hyun Kwon, Sankha Subhra Mukherjee, Praveen Deorani, Masamitsu Hayashi, Hyunsoo Yang
The authors have investigated the possibility of utilizing spin waves for inter- and intra-chip communications, and as logic elements using both simulations and experimental techniques. Through simulations it has been shown that the decay lengths of magnetostatic spin waves are affected most by the damping parameter, and least by the exchange stiffness constant. The damping and dispersion properties of spin waves limit the attenuation length to several tens of microns. Thus, we have ruled out the possibility of inter-chip communications via spin waves. Experimental techniques for the extraction of the dispersion relationship have also been demonstrated, along with experimental demonstrations of spin wave interference for amplitude modulation. The effectiveness of spin wave modulation through interference, along with the capability of determining the spin wave dispersion relationships electrically during manufacturing and testing phase of chip production may pave the way for using spin waves in analog computing wherein the circuitry required for performing similar functionality becomes prohibitive.
View original:
http://arxiv.org/abs/1301.5395
No comments:
Post a Comment