Friday, January 11, 2013

1301.2143 (Shay I. Heizler et al.)

Micro-branching in mode-I fracture in a randomly perturbed lattice    [PDF]

Shay I. Heizler, David A. Kessler, Yonatan S. Elbaz
We study mode-I fracture in lattices with noisy bonds. In contrast to previous attempts, by using a small parameter that perturbs the force-law between the atoms in perfect lattices and using a 3-body force law, simulations reproduce the qualitative behavior of the beyond steady-state cracks in the high velocity regime, including reasonable micro-branching. As far as the physical properties such as the structure factor $g(r)$, the radial or angular distributions, these lattices share the physical properties of perfect lattices rather than that of an amorphous material (e.g., the continuous random network model). A clear transition can be seen between steady-state cracks, where a single crack propagates in the midline of the sample and the regime of unstable cracks, where micro-branches start to appear near the main crack, in line with previous experimental results. This is seen both in a honeycomb lattice and a fully hexagonal lattice. This model reproduces the main physical features of propagating cracks in brittle materials, including the behavior of velocity as a function of driving displacement and the increasing amplitude of oscillations of the electrical resistance. In addition, preliminary indications of power-law behavior of the micro-branch shapes can be seen, potentially reproducing one of the most intriguing experimental results of brittle fracture.
View original: http://arxiv.org/abs/1301.2143

No comments:

Post a Comment