Luqiao Liu, Chi-Feng Pai, D. C. Ralph, R. A. Buhrman
Two promising strategies for achieving efficient control of magnetization in future magnetic memory and non-volatile spin logic devices are spin transfer torque from spin polarized currents and voltage-controlled magnetic anisotropy (VCMA). Spin transfer torque is in widespread development as the write mechanism for next-generation magnetic memory, while VCMA offers the potential of even better energy performance due to smaller Ohmic losses. Here we introduce a 3-terminal magnetic tunnel junction (MTJ) device that combines both of these mechanisms to achieve new functionality: gate-voltage-modulated spin torque switching. This gating makes possible both more energy-efficient switching and also improved architectures for memory and logic applications, including a simple approach for making magnetic memories with a maximum-density cross-point geometry that does not require a control transistor for every MTJ.
View original:
http://arxiv.org/abs/1209.0962
No comments:
Post a Comment