William Witczak-Krempa, Ara Go, Yong Baek Kim
We study the finite temperature and magnetic field phase diagram of electrons on the pyrochlore lattice subject to a local repulsion as a model for the pyrochlore iridates. We provide the most general symmetry-allowed Hamiltonian, including next-nearest neighbour hopping, and relate it to a Slater-Koster based Hamiltonian for the iridates. It captures Lifshitz and/or thermal transitions between several phases such as metals, semimetals, topological insulators and Weyl semimetals, and gapped antiferromagnets with different orders. Our results on the charge conductivity, both DC and optical, Hall coefficient, magnetization and susceptibility show good agreement with recent experiments and provide new predictions. As such, our effective model sheds light on the pyrochlore iridates in a unified way.
View original:
http://arxiv.org/abs/1208.4099
No comments:
Post a Comment