A. Iovan, M. Fischer, R. Lo Conte, V. Korenivski
Colloidal lithography [1] is how patterns are reproduced in a variety of natural systems and is used more and more as an efficient fabrication tool in bio-, opto-, and nano-technology. Nanoparticles in the colloid are made to form a mask on a given material surface, which can then be transferred via etching into nano-structures of various sizes, shapes, and patterns [2,3]. Such nanostructures can be used in biology for detecting proteins [4] and DNA [5,6], for producing artificial crystals in photonics [7,8] and GHz oscillators in spin-electronics [9-14]. Scaling of colloidal patterning down to 10-nm and below, dimensions comparable or smaller than the main relaxation lengths in the relevant materials, including metals, is expected to enable a variety of new ballistic transport and photonic devices, such as spin-flip THz lasers [15]. In this work we extend the practice of colloidal lithography to producing large-area, near-ballistic-injection, sub-10 nm point-contact arrays and demonstrate their integration in to spin-photo-electronic devices.
View original:
http://arxiv.org/abs/1207.7356
No comments:
Post a Comment