Julian M. Rosalie, Hidetoshi Somekawa, Alok Singh, Toshiji Mukai
We report on a quantitative investigation into the effect of size and distribution of rod-shaped \beta' precipitates on strength and ductility of a Mg-Zn alloy. Despite precipitation strengthening being crucial for the practical application of magnesium alloys this study represents the first systematic examination of the effect of controlled deformation on the precipitate size distribution and the resulting strength and ductility of a magnesium alloy. Pre-ageing deformation was used to obtain various distributions of rod-shaped \beta' precipitates through heterogeneous nucleation. Alloys were extruded to obtain a texture so as to avoid formation of twins and thus to ensure that dislocations were the primary nucleation site. Pre-ageing strain refined precipitate length and diameter, with average length reduced from 440 nm to 60 nm and diameter from 14 nm to 9 nm. Interparticle spacings were measured from micrographs and indicated some inhomogeneity in the precipitate distribution. The yield stress of the alloy increased from 273 MPa to 309 MPa. The yield stress increased linearly as a function of reciprocal interparticle spacing, but at a lower rate than predicted for Orowan strengthening. Pre-ageing deformation also resulted in a significant loss of ductility (from 17% to 6% elongation). Both true strain at failure and uniform elongation showed a linear relationship with particle spacing, in agreement with models for the accumulation of dislocations around non-deforming obstacles. Samples subjected to 3% pre-ageing deformation showed a substantially increased ageing response compared to non-deformed material; however, additional deformation (to 5% strain) resulted in only modest changes in precipitate distribution and mechanical properties.
View original:
http://arxiv.org/abs/1207.4544
No comments:
Post a Comment