Thursday, July 19, 2012

1207.4239 (M. Marezio et al.)

Overdoped Cuprates With High Temperature Superconducting Transitions    [PDF]

M. Marezio, O. Chmaissem, C. Bougerol, M. Karppinen, H. Yamauchi, T. H Geballe
Evidence for High Tc cuprate superconductivity is found in a region of the phase diagram where non-superconducting Fermi liquid metals are expected. Cu valences estimated independently from both x-ray absorption near-edge structure (XANES) and bond valence sum (BVS) measurements are > 2.3 for structures in the homologous series (Cu0.75Mo0.25)Sr2(Y,Ce)sCu2O5+2s+{\delta} with s = 1, 2, 3, and 4. The s = 1 member, (Cu0.75Mo0.25)Sr2YCu2O7+{\delta}, 0 \leq {\delta} \leq 0.5, is structurally related to YBa2Cu3O7 in which 25% of the basal Cu cations [i.e. those in the chain layer] are replaced by Mo, and the Ba cations are replaced by Sr. After oxidation under high pressure the s = 1 member becomes superconducting with Tc = 88K. The Cu valence is estimated to be ~2.5, well beyond the ~2.3 value for which other High-Tc cuprates are considered to be overdoped Fermi liquids. The increase in valence is attributed to the additional 0.5 oxygen ions added per chain upon oxidation. The record short apical oxygen distance, at odds with current theory, suggests the possibility of a new pairing mechanism but further experiments are urgently needed to obtain more direct evidence. From the structural point of view the members with s \geq 2 are considered to be equivalent to single-layer cuprates. All have Tc ~ 56 K which is significantly higher than expected because they also have higher than expected Cu valences. The XANES-determined valences normalized to give values in the CuO2 layers are 2.24, 2.25, and 2.26 for s = 2, 3, and 4, while the BVS values determined for the valence in the CuO2 layer alone are 2.31-2.34 for the s = 2 and 3 members. No evidence for periodic ordering has been detected by electron diffraction and high resolution imaging studies. The possibility that the charge reservoir layers are able to screen long range coulomb interactions and thus enhance Tc is discussed.
View original: http://arxiv.org/abs/1207.4239

No comments:

Post a Comment