Wednesday, May 23, 2012

1205.4993 (Martin Magnuson et al.)

The electronic-structure origin of the anisotropic thermopower of
nanolaminated Ti3SiC2 determined by polarized x-ray spectroscopy and Seebeck
measurements
   [PDF]

Martin Magnuson, Maurizio Mattesini, Ngo Van Nong, Per Eklund, Lars Hultman
Nanolaminated materials exhibit characteristic magnetic, mechanical, and thermoelectric properties, with large contemporary scientific and technological interest. Here, we report on the anisotropic Seebeck coefficient in nanolaminated Ti3SiC2 single-crystal thin films and trace the origin to anisotropies in element-specific electronic states. In bulk polycrystalline form, Ti3SiC2 has a virtually zero Seebeck coefficient over a wide temperature range. In contrast, we find that the in-plane (basal ab) Seebeck coefficient of Ti3SiC2, measured on single-crystal films has a substantial and positive value of 4-6 muV/K. Employing a combination of polarized angle-dependent x-ray spectroscopy and density functional theory we directly show electronic structure anisotropy in inherently nanolaminated Ti3SiC2 single-crystal thin films as a model system. The density of Ti 3d and C 2p states at the Fermi level in the basal ab-plane is about 40 % higher than along the c-axis. The Seebeck coefficient is related to electron and hole-like bands close to the Fermi level but in contrast to ground state density functional theory modeling, the electronic structure is also influenced by phonons that need to be taken into account. Positive contribution to the Seebeck coefficient of the element-specific electronic occupations in the basal plane is compensated by 73 % enhanced Si 3d electronic states across the laminate plane that give rise to a negative Seebeck coefficient in that direction. Strong phonon vibration modes with three to four times higher frequency along the c-axis than along the basal ab-plane also influence the electronic population and the measured spectra by the asymmetric average displacements of the Si atoms. These results constitute experimental evidence explaining why the average Seebeck coefficient of Ti3SiC2 in polycrystals is negligible over a wide temperature range.
View original: http://arxiv.org/abs/1205.4993

No comments:

Post a Comment