Monday, February 20, 2012

1202.3810 (L. Demko et al.)

Disorder promotes ferromagnetism: Rounding of the quantum phase
transition in Sr_{1-x}Ca_xRuO_3
   [PDF]

L. Demko, S. Bordacs, T. Vojta, D. Nozadze, F. Hrahsheh, C. Svoboda, B. Dora, H. Yamada, M. Kawasaki, Y. Tokura, I. Kezsmarki
The subtle interplay of randomness and quantum fluctuations at low
temperatures gives rise to a plethora of unconventional phenomena in systems
ranging from quantum magnets and correlated electron materials to ultracold
atomic gases. Particularly strong disorder effects have been predicted to occur
at zero-temperature quantum phase transitions. Here, we demonstrate that the
composition-driven ferromagnetic-to-paramagnetic quantum phase transition in
Sr1-xCaxRuO3 is completely destroyed by the disorder introduced via the
different ionic radii of the randomly distributed Sr and Ca ions. Using a
magneto-optical technique, we map the magnetic phase diagram in the
composition-temperature space. We find that the ferromagnetic phase is
significantly extended by the disorder and develops a pronounced tail over a
broad range of the composition x. These findings are explained by a microscopic
model of smeared quantum phase transitions in itinerant magnets. Moreover, our
theoretical study implies that correlated disorder is even more powerful in
promoting ferromagnetism than random disorder.
View original: http://arxiv.org/abs/1202.3810

No comments:

Post a Comment