M. Sepioni, R. R. Nair, I-Ling Tsai, A. K. Geim, I. V. Grigorieva
We report on an extensive investigation to figure out the origin of
room-temperature ferromagnetism that is commonly observed by SQUID magnetometry
in highly-oriented pyrolytic graphite (HOPG). Electron backscattering and X-ray
microanalysis revealed the presence of micron-size magnetic clusters
(predominantly Fe) that are rare and would be difficult to detect without
careful search in a scanning electron microscope in the backscattering mode.
The clusters pin to crystal boundaries and their quantities match the amplitude
of typical ferromagnetic signals. No ferromagnetic response is detected in
samples where we could not find such magnetic inclusions. Our experiments show
that the frequently reported ferromagnetism in pristine HOPG is most likely to
originate from contamination with Fe-rich inclusions introduced presumably
during crystal growth.
View original:
http://arxiv.org/abs/1201.6374
No comments:
Post a Comment